...med husdjurens hälsa som främsta prioritet
Vi är stolta att bana väg för insektsbaserat djurfoder på vetenskaplig grund. Tillsammans med framstående universitet och forskningspartners driver Petgoods veterinärteam forskningen framåt kring hälsofördelarna med insektsprotein.
Ansvarig för vårt arbete med produktutveckling och forskning, är vår kunniga chefsveterinär Dr. Nicky Sluczanowski. Tillsammans med våra forskningspartners leder hon vetenskapliga projekt, och är idag en av de mest framstående veterinärerna i världen inom området. Hon har medverkat i ett flertal artiklar och poddar.
Nicky är en smådjursveterinär från Adelaide, Australien, med lång klinisk erfarenhet. I Adelaide arbetar hon fortfarande deltid med att ta hand om hundar och katter (och en och annan känguru) på Adelaide Animal Emergency & Referral Centre. I Nickys hem finns även katterna Winter och Autumn, och hon har också ett stort intresse för biodling!
Nedan hittar du ett urval av de podd-avsnitt där vår chefsveterinär Nicky har deltagit för att dela med sig av sin kunskap kring att utveckla insektsbaserade produkter för hund och katt.
The Pet Nutrition Show - Talking with Petgood, Sweden's insect based pet food - öppna med Spotify
Avid Research - What is it like to develop insect-based pet food? - öppna med Spotify
VetEducation - Insect-based pet food, what's the buzz? - lyssna på VetEducations hemsida
Petgoods chefsveterinär Dr Nicky Sluczanowski är medförfattare till en vetenskaplig artikel som undersöker potentiella fördelar av fett från larver av svart soldatfluga i djurfoder. Du kan nå artikeln i sin helhet här.
Artikeln beskriver bland annat följande:
Hjärnhälsa hos åldrande hundar: Den medellånga triglyceriden laurinsyra är dominerande i fettet från larven av svart soldatfluga och kan ha betydande tillämpningar som ett tillskott för åldrande hundars hjärnhälsa. Den har visat potential att kunna förbättra kliniska symtom på både demens och epilepsi, och är ett intressant område för vidare forskning.
Antimikrobiell aktivitet: Fett från larven av svart soldatfluga har dokumenterat starka antimikrobiella egenskaper mot patogena bakteriearter, inklusive Salmonella typhimurium, E. coli, Clostridium perfringens och Pseudomonas aureginosa.
Under våren 2024 har Petgood haft ett samarbete med Ellinor Hammarberg, student vid SLU. Som examensarbete valde Ellinor att undersöka hur hundägare till hundar med diagnostiserad foderallergi upplevde hundens symtom efter byte till insektsbaserat. Resultatet var övervägande positivt, där en stor majoritet såg en förbättring av hundarnas symtom.
Resultaten hos hundar med enbart foderallergi visade att 79% av djurägarna rapporterade förbättring av samtliga symtom (klåda/hudirritation/röda tassar, öroninfektioner, pälsproblem och mag-tarmsymtom) efter byte till insektsbaserat.
Spännande nyheter! En ny studie som utvärderat vårt vuxenfoder för katt har precis publicerats. Hör vår chefsveterinär sammanfatta studien, och de viktigaste resultaten, i videon nedan.
En vetenskaplig studie baserad på vårt vuxenfoder för katt, har utvärderat viktiga parametrar för näring och hälsa så som smaklighet, smältbarhet och påverkan på tarmfloran. Kortfattat visade studien att vårt foder har hög smaklighet och smältbarhet, ger optimal avföringskvalitet och till och med kan öka närvaron av goda tarmbakterier.
De viktigaste fynden i studien är:
Fodret hade mycket hög smaklighet, där alla katter som deltog tyckte om maten och fortsatte äta den under hela studien - de tyckte faktiskt så mycket om fodret att de till och med fortsatte efter att studien var avslutad!
Petgoods foder hade en hög smältbarhet av samtliga näringsämnen, och en smältbarhet av proteinet på över 85%. Detta är i linje med nivåer för andra högkvalitativa premiumfoder, gjorda på mer traditionella proteinkällor.
Det här innebär att katten har lätt för att smälta och ta upp näringen ur vårt foder, och omsätta den i kroppen.
Petgoods foder stimulerade aktivitet i tarmfloran, vilket ledde till ökning av tarmbakterier som anses vara fördelaktiga, och minskning av tarmbakterier som är kopplade till matsmältningsproblem.
Det observerades en ökning av arter som Bifidobacterium och Megamonas, vilka anses vara fördelaktiga för tarmhälsan. En signifikant minskning av bakterier från Clostridium-gruppen noterades också, vilka är förknippade med matsmältningsproblem och negativa för tarmhälsan.
Hör vår veterinär berätta om näringsinnehållet och hälsofördelarna med insektsarten vi använder.
Innan insektsbaserade produkter lanserades på marknaden började forskning för att säkerställa näringsvärdet och säkerheten hos dessa livsmedel. Studier har haft olika fokus, där vissa har tittat på näringssammansättningen, andra på hur den som föda påverkar olika parametrar hos djuret som konsumerar den. Nedan sammanfattar vi det aktuella forskningsläget kring insektsprotein för hundar och katter.
Petgoods insektsbaserade produkter baseras på endast en animalisk proteinkälla, insektsprotein. Insektsarten som används är larven av svart soldatfluga (Hermetia illucens). Det finns flera anledningar till att just larven av svart soldatfluga valts ut som basen till vårt foder. Den är otroligt näringsrik och innehåller rikligt med protein, essentiella aminosyror och nyttiga fettsyror. Den är motståndskraftig mot sjukdomar och har en naturligt snabb tillväxt vilket gör att antibiotika, bekämpningsmedel eller tillväxthormon aldrig behöver användas i produktionen. Insektsprotein är också hållbart då det kräver betydligt mindre resurser i form av foder, mark och vatten för att producera samma mängd protein, och orsakar lägre utsläpp av växthusgaser jämfört med mer traditionella proteinkällor.
Arten är globalt utbredd och anses inte vara ett skadedjur eller potentiell sjukdomsvektor. Larven av svart soldatfluga är kontrollerad och godkänd för konsumtion av både människor och husdjur i EU sedan 2016.
Studier som utvärderat näringsinnehåll hos larven av svart soldatfluga har bland annat analyserat aminosyraprofilen och jämfört det med behovet hos hund och katt. Andra studier har tittat på smältbarhet hos de individuella aminosyrorna, det vill säga hur väl djurets matsmältningssystem kan tillgodogöra sig det. Resultatet är att larven av svart soldatfluga har ett högt aminosyrainnehåll av essentiella aminosyror (McCusker et al, 2014), och en hög smältbarhet av individuella aminosyror (Bosch et al, 2016).
Smältbarhet är ett mått på hur stor del av ett näringsämne som kroppen kan tillgodogöra sig. Det man gör är förenklat att utfodra djuret med proteinet, och därefter mäta i avföringsprover hur mycket av näringsämnet som djuret har kunnat ta upp. God smältbarhet av protein anses ligga över 80%, och proteinet av svart soldatfluga hamnar i genomsnitt kring 85%, det vill säga en hög smältbarhet (El-Wahab et al, 2021; Penazzi, 2021; Sungho, 2021; Yi hu 2020).
Andra studier har tittat på säkerhet, det vill säga för att utvärdera om den insektsbaserade dieten ger påverkan på parametrar som avföringskvalitet, blodvärden, pälskvalitet eller andra kliniska fynd. Studiernas slutsats är att den insektsbaserade dieten är säker, där deltagande djur har bibehållit goda värden och varit friska genom studien. (El-Wahab et al, 2021; Freel et al 2021; Kröger, 2020).
Petgoods veterinärteam utvecklar tillsammans med djurnäringsspecialister alla recept för att säkerställa att fodret uppfyller och/eller överstiger de näringsrekommendationer som utges av av FEDIAF. Stort fokus läggs för att våra recept ska vara nyttiga och näringsrika, och där det är möjligt hjälpa till att förebygga sjukdomar och ge bästa förutsättningar för hälsa hos djuret. Alla våra foder är kompletta och balanserade helfoder, vilket innebär att de tillgodoser hundens eller kattens samtliga näringsbehov.
Åtta hundar utfodrades med ett foder baserat på larven av svart soldatfluga (BSFL) under en period av 50 dagar, i en cross-over-studie. Det insektsbaserade fodret jämfördes mot en kontrolldiet baserad på kyckling, med i övrigt motsvarande ingredienser och näringsvärde.
Resultatet visade potential hos insektsbaserat foder att minska dålig andedräkt och förbättra munhälsan hos hundar.
Proteinmjöl från larven av svart soldatfluga verkar ha potential att förändra mikriobiotan i saliven. En ökning av Moraxella-bakterier kunde konstateras hos gruppen som ätit den insektsbaserade dieten, enligt en metagenomisk analys (med användning av 16S rRNA-gensekvensering). Den här gruppen bakterier anses vara en markör för munhälsa och fördelaktig för mikrobiomet i munhålan.
En 7% minskning av VSC-producerande bakterier i placket konstaterades också hos gruppen som ätit foder baserat på larven av svart soldatfluga. VSC-producerande bakterier är involverade i uppkomsten av dålig andedräkt och tandköttssjukdom.
Hundarna visade en trend av lägre poäng för dålig andedräkt (odour intensity scale) när de utfodrades med dieten baserad på larven av svart soldatfluga, jämfört med kontrollgrupp.
Nedan hittar du ett urval av de vetenskapliga studier som publicerats på ämnet insektsprotein för katt och hund. Artiklarna är endast på engelska.
Proteinkvalitet
Sarah McCusker, Preston R. Buff, Zengshou Yu and Andrea J. Fascetti (2014), “Amino acid content of selected plant, algae and insect species: a search for alternative protein sources for use in pet foods”, Journal of Nutritional Science (2014), vol. 3, e39, page 1 of 5
DOI: 10.1017/jns.2014.33
Abstract: In response to global economic duress and heightened consumer awareness of nutrition and health, sustainable and natural ingredients are in demand. Identification of alternative sources of nitrogen and amino acids, including taurine, may help meet dietary requirements while fostering sustainability and natural feeding approaches. Twenty plants, eighteen marine algae and five insect species were analysed. All samples were freeze-dried, hydrolysed and filtered prior to amino acid analysis. Samples for amino acids were analysed in duplicate and averaged. Nitrogen was analysed and crude protein (CP) determined by calculation. With the exception of taurine concentration in soldier fly larvae, all insects exceeded both the National Research Council’s canine and feline minimal requirements (MR) for growth of all essential amino acids (EAA) and CP. Although some plants and marine algal species exceeded the canine and feline MR for growth for EAA and CP, only very low concentrations of taurine were found in plants. Taurine concentration in insects was variable but high, with the greatest concentration found in ants (6·42 mg/g DM) and adult flesh flies (3·33 mg/g DM). Taurine was also high in some macroalgae, especially the red algal species: Mazaella spp. (4·11 mg/g DM), Porphyra spp. (1·22 mg/g DM) and Chondracanthus spp. (6·28 mg/g DM).
Preliminary results suggest that insects and some marine algal species may be practical alternatives to traditional protein and supplemental taurine sources in pet foods. Safety, bioavailability, palatability and source variability of alternative items as food ingredients should be investigated prior to incorporation into canine and feline diets.
Bosch et al (2016) In vitro digestibility and fermentability of selected insects for dog foods. Animal Feed Science and Technology Volume 221, Part A,November 2016, Pages 174-184
DOI: https://doi.org/10.1016/j.anifeedsci.2016.08.018
Abstract: Here we aimed to evaluate the protein quality of larvae of the black soldier fly (Hermetia illucens, BSF), housefly (Musca domestica, HF) and yellow mealworm (Tenebrio molitor, YMW) and to evaluate the fermentation characteristics of their indigestible fractions. Clean freeze-dried larvae were subjected to in vitro simulated canine gastric and small intestinal digestion. Undigested insect residues, shrimp chitin and fructooligosaccharides (positive control, FOS) were incubated for 48h with inoculum with fresh feces from three dogs simulating large intestinal fermentation. The AA profiles differed among the larvae with proteins from BSF and YMW larvae containing more Val and less Met and Lys than HF larvae. The in vitro N digestibility of the HF (93.3%) and YMW (92.5%) was higher than BSF larvae (87.7%). The BSF larvae also had lower in vitro digestibility values for essential AA (92.4%) and non-essential AA (90.5%) compared to the larvae of the HF (96.6 and 96.5%) and YMW (96.9 and 95.3%). Gas production for FOS increased rapidly during the first 6h. Low and similar amounts of gas were found for HF larvae and chitin whereas gas production slowly increased over 30h and was slightly higher at 48h for BSF than for chitin. Gas production for YMW increased considerably between 6 and 20h. At 48h, gas produced for undigested residues was comparable to shrimp chitin and lower than FOS (P<0.001). Incubation with insect residues resulted in more N-acetylglucosamine than with shrimp chitin (P<0.05), suggesting higher microbial degradation of insect chitin. Fecal microbiota from one dog appeared to be better able to ferment the undigested residue of YMW as gas production increased considerably between 6 and 20h of incubation and was higher than for the microbiota from the other two dogs. The associated metabolite profile indicated that acetate, propionate and butyrate were the main fermentation products. Furthermore, formate was produced in relatively high amounts. It is concluded that the protein quality, based on the amino acid profile and digestibility, of selected insect larvae was high with the undigested insect fractions being at least partly fermented by the dog fecal microbiota.
Tarra A Freel, Alejandra McComb, Elizabeth A Koutsos “Digestibility and safety of dry black soldier fly larvae meal and black soldier fly larvae oil in dogs”, Journal of Animal Science, Volume 99, Issue 3, March 2021, skab047
DOI: 10.1093/jas/skab047
Abstract: Two trials were conducted to assess the acceptance, safety and digestibility of diets containing various inclusion levels of partially defatted black soldier fly (Hermetia illucens) larvae (BSFL) meal and BSFL oil by dogs. In trial 1, 5 extruded diets were evaluated for acceptance in adult Beagle dogs (n = 20; 10 male, 10 female) during a 48-hr period. Diets contained graded levels of BSFL meal (5.0%, 10.0%, and 20.0%), or graded levels of BSFL oil (2.5% and 5.0%), and all diets were well accepted. Thus, a digestibility trial (trial 2) was run with 56 adult dogs (16 male, 40 female) allocated into 7 dietary treatments; dogs were offered an extruded control diet containing no BSFL meal or oil, or extruded diets where BSFL meal partially replaced poultry by-product meal and corn meal at dietary levels of 5%, 10%, or 20% inclusion, or diets with BSFL oil partially replacing poultry fat at a 1:1 ratio at levels of 1%, 2.5%, or 5% inclusion. The treatment diets were fed for 28 d, during which time dogs were monitored for health (via physical examinations, clinical observations, and blood chemistry and hematology) and ingredient evaluation (via body weight, feed consumption, stool observation, and fecal nutrient apparent total tract digestibility). There were no significant differences in body weight or food consumption between treatment groups (P > 0.05) and daily observations indicated that the general health of the animals was maintained throughout the study. Stool quality was maintained at 3.2 to 3.4 (on a 5-point scale with a score of 1 being watery diarrhea and a score of 5 being hard, dry, and crumbly) per treatment group over the fecal observation period (days 22 to 27), indicating a well formed, sticky stool. All group mean hematology and blood chemistry parameters remained within normal limits for dogs. Apparent total tract digestibility of dry matter, protein, fat, and calories was not affected by treatment (P > 0.05). In general, amino acid digestibility was not impacted by treatment although some minor changes were observed. Apparent total tract digestibility was high for all nutrients examined.
Overall, it was concluded that BSFL meal and BSFL oil are well tolerated by dogs and their consumption results in no impact to physiology that would be concerning. Based on these data, BSFL meal and oil did not affect general health and could be included safely in dog diets.
Mioto et al. (2024). Evaluation of protein quality of defatted black soldier fly (Hermetia illucens) larvae meal compared with traditional protein sources for dogs and cats. Journal of Animal Science. 102. 481-482.
DOI:10.1093/jas/skae234.547
Abstract: The objectives of this study were to determine the chemical composition, amino acid digestibility, and protein quality of defatted BSFL in comparison with whole egg powder and chicken meal. In general, BSFL had comparable indispensable standardized amino acid digestibility to chicken meal.
Hund
El Wahab et al. (2021) Insect Larvae Meal (Hermetia illucens) as a Sustainable Protein Source of Canine Food and Its Impacts on Nutrient Digestibility and Fecal Quality, Animals2021,11(9), 2525
DOI: https://doi.org/10.3390/ani11092525
Abstract: Insect larvae meal has been proposed as a sustainable protein source for animal diets. This study aimed to provide information on including black soldier fly larvae meal (BSFL;Hermetia illucens) in comparison to poultry meal (PM) in the canine diet with regard to digestibility and fecal characteristics. In light of this trend, the levels of PM or BSFL meal were added to replace about 30% of dry matter of the basic extruded diet. Six Beagle dogs (BW 9.64 kg) were included in a cross-over experiment. Dogs fed a BSFL meal-based diet showed higher (p< 0.05) apparent protein digestibility (82.3%) compared to those offered a PM-based diet (80.5%). Apparent digestibility for fat was higher (p< 0.05) in groups fed the BSFL meal-based diet (94.5%) compared to those offered the PM-based diet (91.6%). The fecal consistency scores for dogs fed both diets were within an acceptable range (well-formed and firm). Fecal dry matter content was higher (p< 0.05) for dogs fed the PM-based diet (33.0%) compared to those offered the BSFL meal-based diet (28.0%). Including BSFL meal in dog food can be an appropriate source of protein without any negative effects on nutrient digestibility and fecal quality
Penazzi et al (2021) In vivoandin vitroDigestibility of an Extruded Complete Dog Food Containing Black Soldier Fly (Hermetia illucens) Larvae Meal as Protein Source Front Vet Sci 2021 Jun 11;8:65341
DOI: 10.3389/fvets.2021.653411
Abstract: Growing attention is being directed toward insects as a novel and sustainable source of protein for pet food. The aim of the study was to evaluate nutrient digestibility of a diet containing black soldier fly larvae as its main protein source. Moreover, the purpose of the study was to compare the traditionalin vivototal collection method with thein vivomarker method andin vitrodigestibility method. Two isonitrogenous and isoenergetic dry diets containing either venison meal (CTRL diet) or black soldier fly larvae meal (BSF diet) as their primary sources of proteins were fed to six adult dogs, according to a Latin square design. The digestibility of nutrients was determined using bothin vivo("total collection" and "internal marker" approaches) andin vitromethods. The two diets showed similar nutrient digestibility values for dry matter, organic matter, ether extract, ash, and phosphorus. However, a statistical trend (p= 0.066) was observed indicating greater protein digestibility in the BSF diet compared with the CTRL diet. Calcium digestibility was higher in the BSF diet compared with the CTRL diet (p= 0.018). On the contrary, fiber digestibility was lower in the insect-based diet compared with the venison diet (p< 0.001). There was no difference between total collection and internal marker methods in the assessment ofin vivodigestibility for any of the nutrients considered. Thein vitrodigestibility values for dry matter, organic matter, and crude protein, as well as the estimatedin vivodigestibility of organic matter and crude protein by the means of the predictive equation, were aligned with thein vivoresults, althoughin vitro estimations were consistently higher compared with those obtained byin vivo analysis.
Conclusion: Digestibility analysis of a dog food containing insect meal as the sole source of protein (36.5% inclusion) showed promising results in terms of it presenting similar values as a meat-based diet, indicating its suitability as a sustainable protein source for pet food. Moreover, the study showed that both thein vivo marker method and thein vitro method could be possible alternatives to the traditional total collection method in digestibility trials.
X.J. Lei, T.H. Kim, J.H. Park, I.H. Kim (2019) “Evaluation of supplementation of defatted black soldier fly (Hermetia illucens) larvae meal in beagle dogs”, Ann. Anim. Sci., Vol. 19, No. 3 (2019) 767–777
DOI:10.2478/aoas-2019-0021
Abstract: The objective of this experiment was to test the effects of supplementation of defatted black soldier fly (Hermetia illucens) larvae (BSFL) meal in beagle dogs. A total of nine healthy female beagles (initial body weight 12.1 ± 1.76 kg) were fed grain-based diets with three levels of BSFL meal (0, 1% or 2%) in a 42-day feeding trial. At the end of week 6 of the experiment, all dogs were intraperitoneally challenged with escherichia coli lipopolysaccharide (LPS) at 100 μg/kg of body weight. Albumin concentration was linearly increased with increasing BSFL meal level (P<0.05). A linear increase (P<0.05) in calcium concentration was observed when increasing dietary BSFL meal. Although dietary treatments did not affect the digestibility of ether extract, the digestibility of dry matter and crude protein were linearly increased with increasing the level of BSFL meal. The concentration of tumor necrosis factor-α was linearly decreased but glutathione peroxidase (GPx) concentration was linearly increased when increasing the level of BSFL meal at 6 h after challenge (P<0.05). In addition, there were quadratic increases in concentrations of GPx and su- peroxide dismutase with increasing dietary BSFL meal level at 3 h after challenge (P<0.05).
These findings from the present study demonstrate that BSFL meal can be supplemented in the diet to convert beneficial effects to beagle dogs, indicated as improved digestibility of dry matter and crude protein and anti-inflammatory and anti-oxidative capacity.
Susan Kröger, Carolin Heide , Jürgen Zentek (2020), “Evaluation of an extruded diet for adult dogs containing larvae meal from the Black soldier fly (Hermetia illucens)”, Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise- Str. 49, 14195, Berlin, Germany
DOI: https://doi.org/10.1016/j.anifeedsci.2020.114699
Abstract: Insects have experienced an increasing interest as a protein source in recent years. However, their suitability as a protein source for dogs was not yet widely investigated. Therefore, the aim of the study was to compare two extruded diets for adult dogs containing either larvae meal from black soldier fly (Hermetia illucens; HI) or lamb meal as the predominant protein source with regard to apparent fecal nutrient digestibility and the influence on fecal and immunological parameters. Twelve Beagles were used in this cross-over study and divided into two groups. The test diet with 200 g/kg HI larvae meal (HI) was compared with a control diet containing lamb meal (CON). Dogs were fed each diet for a period of five weeks. Blood samples for a complete blood count, lymphocyte phenotyping and lymphocyte proliferation tests were taken at the end of each feeding period. The latter was either mitogen- or feed antigen-induced with different protein concen- trations of HI larvae meal (30–500 μg protein/mL). Fecal samples were collected for five days during each feeding period. The coefficient of the total apparent fecal digestibility (CTTAD) of macronutrients, fecal metabolites, the output and the dry matter content of the feces were analyzed. D-Glucosamine as indicator for chitin was analyzed by high-performance anion-ex- change chromatography with pulsed amperometric detection in the diet and the feces. The chi- tinase activity was determined in the feces. The fecal output was reduced in dogs fed the HI diet (P = 0.038). The CTTAD of dry matter was higher (P = 0.002) when dogs were fed HI compared to CON (0.832 vs. 0.818) and the CTTAD of crude protein was higher (P = 0.002) when dogs received CON compared to HI (0.792 vs. 0.773). Concentrations of acetate (P = 0.011) and ammonium (P = 0.001) were higher in CON. The fecal score differed (P = 0.041) between HI (2.25) and CON (2.04), but both feeding groups had a formed and dry fecal consistency. The chitin concentration was numerically higher in the feces of dogs fed HI (92.2 g/kg DM) compared to CON (2.9 g/kg DM), the fecal chitinase activity did not differ between both diets. Complete blood counts, lymphocyte phenotyping and proliferation were not affected. In conclusion, the HI larvae meal in a dry dog diet was tolerated without adverse signs and did not affect immuno- logical measurements compared to a commercial dry diet with lamb meal, indicating that larvae meal from HI can be considered an “alternative” protein source for dog nutrition.
B. Agy Loureiro, R.K. Nobrega Cardoso, R. Silva Carvalho, W.A. Zamora Restan, M. Dalim, N. Martin Tome and A. Paul (2023). Book of Abstracts of the 74th Annual Meeting of the European Federation of Animal Science. LINK.
The study evaluated the use of black soldier fly larvae (BSFL) meal in diets for dogs on digestibility, intestinal fermentation end-products and faecal microbiota. Two kibble iso-nutrient diets were developed using either poultry by-product (PBP) meal or BSFL meal as main protein. Eight beagle dogs were assigned in a cross-over design, with 2 treatments (diets) and 2 periods of 50 days each (with 7 days of wash-out between periods). In the first period, 4 dogs received either the PBP diet or the BSFL diet, while in the second period the diets were inverted. At day 15 of each period, dry matter, organic matter, crude protein and fat digestibility; and metabolizable energy (ME) were determined by total faeces collection method for 5 days. Volatile fatty acids and ammonia were analysed in fresh faecal samples collected on days 21 to 24 of each period. After each period (50 d) fresh faeces were collected for metagenomic analysis using bacterial 16s rRNA marker gene sequence. Nutrients digestibility was similar between the food treatments, except for fat digestibility and diet ME, which was higher when dogs were fed BSFL food (P=0.01). Faecal ammonia was lower (151 vs 94 mmol/g faeces) when dogs were fed BSFL in comparison to PBP (P=0.004). BSFL diet promoted changes in faecal microbiota, with a significant difference in beta diversity, with taxa dissimilarity by Unifrac (P=0.036). BSFL diet promoted a higher relative abundance of Bacteroides (P=0.040), responsible to contributes to intestinal permeability; and Phocaeciola (P=0.028), considered a biomarker of human health. On the other hand, BSFL reduced the abundance of Lachnospira (P=0.003), positively correlated with intestinal butyrate production, despite no diet differences found for volatile fatty acid in faeces. In conclusion, the use of BSFL meal in dog diet didn’t affect the use of nutrients, but increased diet fat digestibility and ME; reduced faecal ammonia, and positively modified the faecal microbiome of dogs, favouring some beneficial bacteria genera.
Katt
Bosch, G., Loureiro, B.A., Schokker, D., Kar, S.K., Paul, A., & Sluczanowski, N. (2024). Black soldier fly larvae meal in an extruded food: effects on nutritional quality and health parameters in healthy adult cats. Journal of Insects as Food and Feed. https://doi.org/10.1163/23524588-00001093
Abstract: We aimed to evaluate the effects of including black soldier fly larvae meal (BSFL) meal in a dry extruded food on nutritional quality and some health aspects in healthy adult cats. Two dry extruded foods with either poultry meal (control) or 37.5% BSFL meal were fed to eight (3.8-5.2 kg BW; 2.3-y.o.) cats in a cross-over design with two 28-day periods. Food acceptance was recorded throughout the study and samples were collected during the last 7 days of each period for assessment of apparent total tract nutrient digestibility, faecal consistency, fermentation products and microbiota, and blood biochemistry and haematology. Foods were well-accepted and faeces were well-formed with optimal consistency scores. Digestibility values for dry matter, organic matter, nitrogen and gross energy were considered high for the BSFL meal-based food but lower than for the control food (P<0.05). Unexpectedly, inclusion of BSFL meal had a profound impact on the intestinal microbial activity and composition as illustrated by increased faecal short-chain fatty acids (P<0.05) and biogenic amines concentrations (P<0.05) and reduced bacterial diversity (P<0.05) and shifts in multiple genera (e.g. more Bifidobacterium) in the faeces (P<0.05). Minor changes in haematology and serum biochemistry parameters were found and deemed not clinically relevant. Overall, this study showed that a BSFL meal-based extruded dry food is readily accepted by healthy adult cats, yields optimal faecal consistency, had suitable nutrient digestibilities and can support their health when fed for 28 days with new leads for impact on feline gut health.
Yi Hu et al (2020). PSVI-26 Insect meals as novel protein sources in wet pet foods for adult catsGet access Journal of Animal Science, Volume 98, Issue Supplement_4, November 2020, Page 315.
DOI: https://doi.org/10.1093/jas/skaa278.561
Abstract: As the human and pet populations increase, the human and pet food industries will experience a greater demand for animal-based protein sources. Finding alternative proteins that are nutritional adequate and safe for companion animals may contribute to diversification of protein sources and lower the demand for animal-based protein in pet food products. However, limited information is available on the nutritional value of insects for pet animals. Thus, the object of this study was to evaluate three different insect meals, Speckled cockroach (SC; Nauphoeta cinerea), Madagascar hissing cockroach (MC; Gromphadorhina portentosa) and superworm (SW; Zophobas morio larvae), added at the expense of chicken meal (control diet), as protein sources in retorted feline diets. This study was a complete randomized design, with a total of 28 cats (mean age = 2.1 ± 0.03 yr; mean BW= 4.9 ± 0.8 kg) randomly assigned to 1 of the 4 dietary treatments. All animal procedures were approved by the University of Illinois Institutional Animal Care and Use Committee. All diet formulated meet or exceed the AAFCO (2018) nutrient profile. The experimental period was 28 d in length, with 7 d of diet adaptation (control diet) followed by 21 of feeding the assigned experimental diets. Fecal samples were collected at the last 4 d of experiment. All diets were well digested by the cats, and apparent total tract digestibility of dry matter (86.5–88.1%), organic matter (88.9–90.6%), fat (90.1–92.3%), crude protein (86.3–89.4%) did not differ among treatments (P > 0.05). Fecal scores were not affected by dietary treatment, ranging from 1.8 to 2.2 (5–point scale). Similarly, fecal branched-chain fatty acids, indole and phenol concentrations did not differ among treatments. Overall, the selected insect meals tested herein had no negative effects on macronutrient digestibility, fecal characteristics and metabolites, or overall health of adult cats.
Julia Guazzelli Pezzali, Anna Kate Shoveller (2021). The effects of a semi-synthetic diet with inclusion of black soldier fly larvae meal on health parameters of healthy adult cats Journal of Animal Science, Volume 99, Issue 10, October 2021.
DOI: https://doi.org/10.1093/jas/skab290
Abstract: In recent years, black soldier fly larvae meal (Hermetia illucens; BSFLM) has gained attention as a high value alternative protein source that is of great interest to the pet food industry. However, little is known regarding the effects of BSFLM on health parameters in adult cats. Thus, the objective of the current study was to determine the short-term effects of a semi-synthetic diet containing 4.6% inclusion of BSFLM on complete blood count (CBC) and serum biochemistry profile of healthy adult cats. Healthy adult male cats (n = 8; 1.4 yr) were fed the experimental diet for 21 d (experimental period) to maintain BW. Cats were washed in on a commercial diet and blood samples were collected before the start and at the end of the experimental period to measure gross health parameters. Results were analyzed as one-way ANOVA using the GLIMMIX procedure in SAS with cat as a random effect (SAS v. 9.4, The SAS Institute, Cary, NC). Cats lost an average of 5% of their BW (P = 0.0003) due to a concurrent decrease in food intake. A significant increase of alanine aminotransferase, chloride, potassium, sodium, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration was observed on day 21 vs. baseline (P < 0.05). In contrast, albumin, amylase, calcium, cholesterol, eosinophil, lymphocyte, monocyte, mean platelet volume, red blood cells, total protein, total solid proteins, and urea decreased over time (P < 0.05). However, all CBC and serum biochemistry parameters stayed within reference range for adult cats, with exception of glucose and mean corpuscular hemoglobin concentration that were above and below the reference range, respectively. Transient increases in glucose concentrations were likely due to sedation with dexmedetomidine prior to blood collection. The changes observed over time in the aforementioned parameters are likely due to changes in macronutrient composition of the diets offered prior to and during the experimental period (commercial diet vs. semi-synthetic diet, respectively) and cannot be attributed solely to a unique property of BSFLM. In conclusion, cats fed a semi-synthetic diet containing 4% BSFLM inclusion for 21 d remained healthy with no clinically relevant changes in CBC and serum biochemistry parameters.
Do, Sungho (2021) Black soldier fly larvae as an alternative protein source for canine and feline diets. Dissertation at Animal Sciences, University of Illinois at Urbana-Champaign https://www.ideals.illinois.edu/items/124834
Abstract: The overall objective of this dissertation was to evaluate the nutrient composition of BSFL, its amino acid (AA) digestibilities using a precision-fed cecectomized rooster model, and its effects on palatability, apparent total tract digestibility (ATTD), fecal characteristics, and skin and coat health markers of healthy adult cats. Our first aim was to determine the effects of harvest age on nutrient and AA digestibility and digestible indispensable amino acid score (DIAAS)-like values of BSFL using the precision-fed cecectomized rooster assay. The BSFL were harvested at six different ages (days after hatch; day 0, 11, 14, 18, 23, and 29). Our second aim was to evaluate the effects of BSFL dietary calcium form and concentration on nutrient composition, nutrient and AA digestibilities, and DIAAS-like values for BSFL using the precision-fed cecectomized rooster assay. Calcium chloride (CaCl2) and calcium carbonate (CaCO3) were used to raise BSFL at different concentrations (1.2% of CaCl2, 1.2% of CaCO3, 0.75% of CaCO3, and 0.6% of CaCl2 and CaCO3). Our third aim was to determine palatability and ATTD of BSFL-containing canned diets, fecal characteristics, and skin and coat health markers of healthy adult cats consuming them. Cats were fed the canned diets formulated with poultry by-product meal (PBPM), BSFL meal, whole BSFL, and BSFL oil. In our first aim, we determined that all harvest ages of BSFL were contained high-quality protein that were well digested, but AA digestibilities were highest at days 14, 18, and 23. Threonine, Met, Cys, and Arg often were the first-limiting AA of BSFL based on DIAAS-like reference values for dogs and cats. In our second aim, we determined that nutrient and AA digestibilities were high (81% to 96% digestibilities), but not different among BSFL fed different calcium sources and concentrations. Aromatic AA (Phe + Tyr) and sulfur-containing AA (Met + Cys) often were the first-limiting AA based on DIAAS-like reference values for dogs and cats. In our third aim, we reported that the intake ratios were higher in cats fed canned diets containing BSFL meal (1.93:1), whole BSFL (2.03:1), and BSFL oil (1.57:1) compared with a poultry-based control diet. Fecal pH and scores and caloric intake were not different (P > 0.05) among diets, but fecal output (as-is, DM, and kcal/d) was highest (P < 0.05) for cats fed BSFL meal compared with those fed BSFL oil. The ATTD of acid-hydrolyzed fat (AHF) was not different among treatments, while DM ATTD was greater (P < 0.05) for cats fed the BSFL oil diet than for those fed the BSFL meal diet. The ATTD of OM by cats fed control or BSFL oil diets was greater (P < 0.05) than for those fed the BSFL meal or BSFL whole diets. For crude protein (CP) and energy, ATTD was greatest (P < 0.05) for cats fed the BSFL oil diet and lowest for those fed the BSFL meal diet. Skin and coat health markers, including skin transepidermal water loss (TEWL), skin hydration status, hair imaging score, and skin and coat hair scores were not affected (P > 0.05) by treatments. Similarly, hematology and a delayed-type hypersensitivity (DTH) response to saline, phytohaemagglutinin (PHA), and concanavalin A (CONA) showed no differences (P > 0.05) among diets. A select serum metabolites were affected by diet (P < 0.05), but remained within reference ranges. This research provided information on the potential for using BSFL in pet foods. Based on our results, the suggested harvest age of BSFL ranges between 14 and 23 days because these ages provide the highest protein quality. Black soldier fly larvae raised with calcium chloride and calcium carbonate accumulate more calcium, but protein quality was similar. Finally, BSFL-derived ingredients hold strong potential for use in pet foods, whether it is included in extruded or canned foods.
Reilly et al (2022). Chemical composition of selected insect meals and their effect on apparent total tract digestibility, fecal metabolites, and microbiota of adult cats fed insect-based retorted diets. J Anim Sci 2022 Feb 1;100(2)
DOI: 10.1093/jas/skac024.
Abstract: Insect meals are novel and potentially sustainable protein sources. The objectives of this study were to determine the nutrient composition of speckled cockroach, Madagascar hissing cockroach, and superworm (SW) and to determine the effects of these insect meals on food intake, digestibility of macronutrients, fecal scores, metabolites, and microbiota of adult cats fed insect- or chicken-based wet pet foods. Among the three selected insect meals evaluated, oleic acid, palmitic acid, linoleic acid, and stearic acid were the most prevalent fatty acids. Branched-chain amino acids and arginine were the most preponderant indispensable amino acids in these insect meals. All diets were well digested by the cats with no differences observed on macronutrient digestibility. Similarly, fecal scores did not differ among the treatments and were within the ideal range. No differences in fecal metabolite concentrations were observed. Only a few genera from Firmicutes and Bacteroidota phyla differ in cats fed SW diet in contrast to other dietary treatments. Overall, the selected insect meals evaluated herein are rich in linoleic acid, an essential fatty acid for cats. Insect-based retorted diets led to comparable results to those achieved with a chicken-based retorted diet, suggesting that these novel protein sources might be adequate alternative ingredients in feline diets.
Oba et al (2024). Effects of black soldier fly larvae on the serum chemistry, hematology, fecal characteristics, and oral health measures of healthy adult cats, Journal of Animal Science, Volume 102, Issue Supplement_3, September 2024, Pages 569–570,
DOI: https://doi.org/10.1093/jas/skae234.638
Abstract: The objective of this study was to determine the effects of BSFL on serum chemistry, hematology, fecal characteristics, and oral health measures of adult cats. 17 Adult cats were randomly assigned to 1 of 2 experimental diets: control diet (n = 12) or BSFL-containing diet (20% whole BSFL meal and 24% chicken meal; n = 13). Overall, 20% BSFL dietary inclusion had comparable effects as chicken meal, suggesting that it will serve as a suitable replacement in cat foods.
Cesar, C.G.L. et al "Insect meal in cat food: impact on palatability, digestibility, faecal fermentation and microbiota." European Society of Veterinary and Comparative Nutrition 28th Congress Proceedings (2024) p.178
Summary: This study aims to assess the effects of including BSF insect meal on parameters of palatability, digestibility, fermentation products and faecal microbiota in adult cats. Six healthy adult cats were randomly divided three dietary treatment groups; a control diet with poultry viscera meal as sole protein; test diet 1 containing 50% BSFL meal and 50% poultry viscera meal, and test diet 2 with BSFL meal as sole protein. The dietary trial period was 21 days. Apparent digestibility coefficients of nutrients, faecal concentrations of short chain fatty acids (SCFA) and branched chain fatty acids (BCFA), ammonia nitrogen, lactic acid, pH, and faecal bacteria were measured. Palatability of diets was also assessed. The authors concluded that BSFL diets had no adverse effects on cats' health, impacting faecal microbiota and being well-accepted by the animals, highlighting the potential of BSFL meal as a sustainable protein source for feline diets.
Hälsofördelar
Ghina Kotob, Nicky Sluczanowski, Shahida Anusha Siddiqui, Nuria Martin Tome, Monika Dalim, Paul van der Raad, Kees Aarts, Aman Paul (2022). Potential application of black soldier fly fats in canine and feline diet formulations: A review of literature. Journal of Asia-Pacific Entomology, 25 (4)
DOI: https://doi.org/10.1016/j.aspen.2022.101994.
Abstract: Black soldier fly (BSF) larvae derived ingredients are being considered as sustainable alternatives to conventional animal derived ingredients in pet food formulations. In Europe, legislations permit the use of BSF fat in pet food formulations. However, BSF fat has received very little attention from pet food producers till now. This article examines literature regarding fatty acid profile and some minor components reported in BSF fat. Literature on digestibility, antimicrobial activity, intestinal immunity, and brain health improvement potential has also been carefully reviewed. Finally, some examples of pet food brands using BSF fat commercially were mentioned, and compilation of consumer review scores from popular review websites have also been illustrated. Literature reviewed in this article indicate that BSF fat is highly digestible and has interesting health benefits, thus supporting its use as functional pet food ingredient.
Neto et. al (2023). Black soldier fly (Hermetia illucens) larvae meal based extruded diets: potential to improve canine oral health. Journal of Insects as Food and Feed,1(aop), 1-13.
DOI: 10.1163-23524588-20230098
Abstract: Black soldier fly larvae (BSFL) meal-based pet food is gaining traction in Europe. In order to unlock the full potential of antimicrobial peptides and fatty acids present in BSFL meal, we evaluated the role of BSFL meal containing pet food in modulating the oral health of dogs. During this study eight female beagle dogs were fed with two iso-nutritive diets in a cross-over design with two periods of 50 days each. These diets were made using defatted BSFL meal or low ash poultry by product (PBP) meal as the main protein source. At the end of the first period, the animals underwent a wash out period of 7 days and the treatments were inverted following this treatment. Oral health of dogs was measured by: (1) count of colony forming unit of volatile sulfur producing bacterial (VSC) in dental plaque; (2) DNA extraction and amplification of 16S rRNA genes from saliva for bacterial profiling; and (3) oral malodor scoring. We found significant reduction of VSC (P<0.05) before and after 50 days of BSFL based pet food consumption. Oral malodor score was not significantly different before and after BSFL based pet food consumption. However, there was a strong tendency for malodor reduction related to BSFL fed groups (P=0.097). Finally, there was a significant difference (P<0.05) between treatments in the relative abundance of Moraxella, with higher abundance in dog’s saliva when fed BSFL diets. This bacterial group is identified as a marker of oral health. In conclusion, the consumption of BSFL meal-based diets has strong potential to decrease VSC and positively modulates the saliva microbiota, which can suppress the occurrence of halitosis and improve oral health.
Koutsos et al (2022). Immunomodulatory potential of black soldier fly larvae: applications beyond nutrition in animal feeding programs. Transl Anim Sci. 2022 Jun 22;6(3):txac084.
DOI: PMID: 35854966;
Abstract: Insect-derived ingredients, including whole larvae, protein-rich meal, and oil, have been extensively studied in recent years and shown to be a sustainable source of quality nutrition for virtually all animal species and life stages. In addition to the ability to use these ingredients as a source of essential nutrition, more recent research has demonstrated the potential for the immunomodulatory activity of various components of insect-derived ingredients. For all insects studied, antimicrobial peptides make up a critical part of the insects' innate immune system and these peptides have antimicrobial efficacy when purified from hemolymph and tested in vitro. From black soldier fly larvae, in particular, lauric acid is a predominant fatty acid deposited into the insect, and lauric acid also has potential antimicrobial activity in vitro and in vivo. Finally, the chitin and chitosan components of the insect exoskeleton may modulate microbial activity in a variety of ways. In companion animals, poultry, and livestock species, insect-derived ingredients have shown the potential to reduce the impact of actual or simulated disease challenge on several parameters of animal health and well-being. This review describes the current state of knowledge of the immunomodulatory potential of insect-derived ingredients.
Vecchiato, C.G. et al 2024 "Hermetia illucens diet improved gut microbial metabolic activity in healthy dogs" European Society of Veterinary and Comparative Nutrition 28th Congress Proceedings (2024) p.101.
Summary: This study aimed to compare two diets different in protein source, containing either BSFL protein meal (test diet) or poultry meal (control diet) with regard to nutrient digestibility and faecal microbial parameters in healthy dogs. A total of twelve adult dogs were involved in a cross-over study design of 2 x 4 week feeding trial periods. Faecal samples were tested for apparent total tract digestibility, moisture, pH, NH3, volatile fatty acids (VFA), and selected bacterial populations. The results showed similar nutrient digestibility between the BSFL test and poultry control diets. The BSFL test diet increased propionate and Bifidobacterium spp., potentially showing prebiotic properties and effects of the insect meal.
Mioto, J.C., Oba, P.M., Madison, S., Adolphe, J., and Godoy, M.R. "Modulation of gut microbiota of dogs fed extruded diets containing black soldier fly larvae meal (BSFLM)" European Society of Veterinary and Comparative Nutrition 28th Congress Proceedings (2024) p.123.
Summary: The objective of the study was to determine the modulation of gut microbiota of dogs fed diets containing BSFL meal. Thirty dogs were randomly allocated to three experimental diet groups of 10 dogs each; the control diet being poultry by-product meal as the primary protein, while the other two diets incorporated BSFL meal at levels of 15% and 30%, respectively; partially or fully replacing poultry by-product meal. The diet trial period lasted 56 days; with faecal samples collected on days 0, 28, and 56 to evaluate the impact on faecal microbiota. This study demonstrates the impact of BSFL meal on the gut microbiome of dogs, with results revealing selective modifications in microbial community structure and metabolic correlations, without affecting overall diversity. These findings highlight the potential of dietary interventions to influence gut microbiota composition and associated metabolic processes, and offer insights into alternative protein sources in canine nutrition.
Allergi
Hammarberg (2024). Att utfodra insektsprotein till hundar med foderallergi: ur djurägarens perspektiv. SLU Epsilon arkiv: https://stud.epsilon.slu.se/20214/
Abstract: Hundar kan, precis som människor, drabbas av allergier. Vid foderallergi hos hund rekommenderas ofta ett hydrolyserat foder, vilket innebär att proteinet spjälkas för att immunförsvaret inte ska känna igen det. Ett alternativ till hydrolyserat foder är att utfodra hunden med en hypoallergen proteinkälla, till exempel insekter. Denna studie har utförts i samarbete med företaget Petgood, som tillverkar djurfoder baserat på proteinet från larven av den svarta soldatflugan (Hermetia illucens). En enkät skickades ut till djurägare via petgood’s kunddatabas, riktad mot hundar med diagnostiserad foderallergi som äter eller har ätit foder baserat på insekter. Målet var att undersöka om insektsprotein är ett bra alternativ till hundar med foderallergi ur djurägarens perspektiv. Två mindre studier har tidigare undersökt insektsdieter till hundar med foderallergier, men eftersom studierna varit små är det svårt att säkerhetsställa resultatet. I denna studie rapporterade 79% av djurägarna att deras hundar, med endast diagnostiserad foderallergi att alla symtom förbättrades efter foderbytet. Symtomen som bedömdes var klåda, hudirritation, röda tassar, öroninflammationer, pälskvalitet och gastrointestinala symtom.
Lee et al (2021). Clinical application of insect-based diet in canine allergic dermatitis. Korean Journal of of Veterinary Research, 61 (4).
DOI: https://doi.org/10.14405/kjvr.2021.61.e36
Abstract: The objective of this study was to evaluate the beneficial effects of the short-term ap- plication of insect-based diet in canine allergic dermatitis. Total 19 atopic dogs with concurrent cutaneous adverse food reactions were enrolled and classified into 3 groups. The treatment group (n = 7) was fed insect-based diet, the positive control group (n = 6) was fed salmon-based diet, and the negative control group (n = 6) was fed commercial or homemade diet for 12 weeks. The degree of skin lesions was evalu- ated based on canine atopic dermatitis extent and severity index (CADESI-4). Addi- tionally, transepidermal water loss (TEWL) and pruritus visual analog scale were evalu- ated. All indices were evaluated every 4 weeks after the initial administration of hypo- allergenic diets. In the treatment group, significant decrease in the CADESI-4 score was observed at 8 weeks compared to the baseline score (p = 0.031). There were sig- nificant differences in the CADESI-4 score between the groups at 8 weeks (p = 0.008), 12 weeks (p = 0.012), and TEWL at 12 weeks (p = 0.022). This preliminary result demonstrates the potential hypoallergenicity of an insect-based diet through features that diminish cutaneous lesions and skin barrier dysfunction.
Böhm et al (2018). Effect of an insect protein-based diet on clinical signs of dogs with cutaneous adverse food reactions. Tierarztl Prax Ausg K Kleintiere Heimtiere. 2018 Oct;46(5):297-302. English, German.DOI: https://pubmed.ncbi.nlm.nih.gov/30541169/
The aim of this study was to evaluate the effect of a new commercially available, insect protein-based diet on the clinical signs in those dogs via Canine Atopic Dermatitis Lesion Index (CADLI), Pruritus Visual Analogue Scale (PVAS) and coat quality score. A total of 20 dogs with atopic dermatitis due to previously diagnosed adverse food reaction were included in this study. This food was the only food fed to the patients for 2 weeks. The lesion score improved in 12 out of 20 dogs in. Only two dogs out of 15, which completed the study, showed mild deterioration of their lesions (on average by 1.5 CADLI points). One dog's skin lesions were unchanged. Pruritus could be reduced in eight patients but remained unchanged in four dogs. Two further patients deteriorated minimally (on average by 1.5 pruritus score points) and one dramatically (8 pruritus score points). The coat quality was only evaluated in 14 dogs. Six of 14 dogs showed an improvement in coat quality. The improvement of the lesion scores (Wilcoxon test, p = 0.007) and coat quality (Wilcoxon test, p = 0.01) was significant, there was no significant change in pruritus scores (p = 0.53). The palatability was very good the compatibility was except for one patient very good. Based on these results, the investigated insect protein-based diet is an interesting alternative for dogs with food intolerance.
Cesar et al (2024). An Assessment of the Impact of Insect Meal in Dry Food on a Dog with a Food Allergy: A Case Report. Animals. 2024; 14(19):2859. DOI: https://doi.org/10.3390/ani14192859
Abstract: Food allergy in dogs, primarily triggered by proteins, results in symptoms in the skin and gastrointestinal system. This case study focused on a 5-year-old female beagle weighing 12.4 kg, diagnosed with a food allergy with gastrointestinal manifestations, to assess the efficacy of black soldier fly larva (BSFL) meal in controlling the condition. The protocol included two nutritionally very similar diets: the control diet, with poultry by-product meal; and the BSFL diet, completely substituting the poultry by-product meal with BSFL meal. After a 12-day adaptation period to the BSFL diet, the dog maintained an adequate fecal score and showed no gastrointestinal changes. A food challenge test with the control diet induced gastrointestinal manifestations, which were reversed within two days by reintroducing the BSFL diet. The BSFL meal may be a promising option, offering improvement in gastrointestinal symptoms in dogs with food allergies. It represents a viable, cost-effective, and beneficial alternative for dogs diagnosed with food allergies.
Carvalho et al. (2024). Effect of feeding black soldier fly larvae meal based diet on canine skin barrier function, organic antioxidant defence and blood biochemistry. Archives of Animal Nutrition, 78(2), 159–176.
DOI: https://doi.org/10.1080/1745039X.2024.2375463
Abstract: Black soldier fly meal in pet diets is gaining acceptance. This study aimed to assess the use of black soldier fly larvae defatted meal (BSFL) and its impact on blood parameters, biochemical markers, organic antioxidant capacity, skin barrier function and skin and coat quality. A cross-over study involved eight beagle dogs with two periods of 50 days each and a washout period of seven days in between. Two approximately iso-nutritive extruded diets were evaluated, the first containing 29.5% BSFL meal and a control diet containing 26% poultry by-product meal (PBP) as protein source. Skin and coat evaluations and blood collections were conducted before and after each period. Skin barrier function was assessed by measurement of trans epidermal water loss (TEWL) and stratum corneum hydration (SCH) in belly and pinna of the dogs on days 0, 15, 30, and 45 of each period. A trend for higher antioxidant effect was found for BSFL diet trough malondialdehyde and Vitamin E measurement in dog’s serum. When fed PBP diet dogs exhibited reduction in serum cholesterol and LDL levels after 50 days. TEWL was significantly reduced in pinna over time when dogs were fed BSFL, and TEWL in belly was significantly lower in dogs fed BSFL in comparison to PBP. SCH was also higher for the BSFL group along the feeding period in comparison to PBP, indicating improved ability of the dogs to retain water and keep skin moisture. Improved skin barrier function could be related to fatty acids from BSFL and increased sebaceous lipids in skin. These are responsible for to avoid water loss and to improve skin protection against microbial insults. Inclusion of BSFL as protein source did not promote negative changes in blood biochemistry and had minor antioxidant effect in healthy dogs. However, it proved effective in improving skin barrier function, making BSFL a valuable alternative protein source for dogs, particularly those with sensitive skin or allergies manifesting on the skin.
Översikter
Zou et al (2024) Applications of insect nutrition resources in animal production, Journal of Agriculture and Food Research, Volume 15, 2024
DOI: https://doi.org/10.1016/j.jafr.2024.100966.
Abstract: The foreseeable global animal production pressure has triggered people to search for sustainable novel feed resources. As the most abundant species in the world, insects are considered to be an alternative feed source. This review is to give comprehensive analysis of the insect as animal feed. In recent years, insect feed has been used in poultry, livestock production, aquaculture and pets. Positive impacts of using insect as feed source include nutritional enrichment, economic benefits and environmental merits. Also, barriers of using insects as feed related to animal products evaluation, insect breeding scale, consumer acceptance and legislation. This paper will be helpful in laying the foundation for the in-depth development and utilization of insect feed resources.
Summary: When used in complete pet food, insect proteins and lipids (fats) can contribute to nutritious and palatable pet food that can also be environmentally sustainable (Fera and Minerva, 2019). While there is a wide range of pet food products to choose from, those containing insect-based ingredients help broaden the choice of non-traditional pet foods on offer to pet owners. The insects are mainly rendered into high protein meal (e.g. 55% protein with an average 80% digestibility) (Bosch et al. 2020) and fats, or made into puree which is stored frozen. Insects such as black soldier fly larvae are rich in protein and have a clear potential in animal nutrition. Additionally, insects can have high concentration of fats, minerals, and vitamins, depending on what they are fed and on their larval stage at the time of harvest.